Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
FEMS Microbes ; 5: xtae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606354

RESUMO

Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.

3.
Nat Commun ; 15(1): 494, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216585

RESUMO

Carbapenem-resistant Escherichia coli (CREC) ST410 has recently emerged as a major global health problem. Here, we report a shift in CREC prevalence in Chinese hospitals between 2017 and 2021 with ST410 becoming the most commonly isolated sequence type. Genomic analysis identifies a hypervirulent CREC ST410 clone, B5/H24RxC, which caused two separate outbreaks in a children's hospital. It may have emerged from the previously characterised B4/H24RxC in 2006 and has been isolated in ten other countries from 2015 to 2021. Compared with B4/H24RxC, B5/H24RxC lacks the blaOXA-181-bearing X3 plasmid, but carries a F-type plasmid containing blaNDM-5. Most of B5/H24RxC also carry a high pathogenicity island and a novel O-antigen gene cluster. We find that B5/H24RxC grew faster in vitro and is more virulent in vivo. The identification of this newly emerged but already globally disseminated hypervirulent CREC clone, highlights the ongoing evolution of ST410 towards increased resistance and virulence.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Escherichia coli , Criança , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Células Clonais , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
4.
PLoS One ; 18(12): e0292645, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113233

RESUMO

Previous work indicated that the incidence of travellers' diarrhoea (TD) is higher in soldiers of British origin, when compared to soldiers of Nepalese descent (Gurkhas). We hypothesise that the composition of the gut microbiota may be a contributing factor in the risk of developing TD in soldiers of British origin. This study aimed to characterise the gut microbial composition of Gurkha and non-Gurkha soldiers of the British Army. Recruitment of 38 soldiers (n = 22 Gurkhas, n = 16 non-Gurkhas) and subsequent stool collection, enabled shotgun metagenomic sequencing-based analysis of the gut microbiota. The microbiota of Gurkhas had significantly (P < 0.05) lower diversity, for both Shannon and Simpson diversity indices, using species level markers than the gut microbiota of non-Gurkha soldiers. Non-metric Multidimensional Scaling (NMDS) of the Bray-Curtis distance matrix revealed a significant difference in the composition of the gut microbiota between Gurkhas and non-Gurkha soldiers, at both the species level (P = 0.0178) and the genus level (P = 0.0483). We found three genera and eight species that were significantly enriched in the non-Gurkha group and one genus (Haemophilus) and one species (Haemophilus parainfluenzae) which were enriched in the Gurkha group. The difference in the microbiota composition between Gurkha soldiers and soldiers of British origin may contribute to higher colonization resistance against diarrhoeal pathogens in the former group. Our findings may enable further studies into interventions that modulate the gut microbiota of soldiers to prevent TD during deployment.


Assuntos
Microbioma Gastrointestinal , Militares , Humanos , População Branca , Povo Asiático , Metagenoma
5.
Lancet Reg Health West Pac ; 37: 100780, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37693864

RESUMO

Background: Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major public health concern globally. Often studied in the context of hospital outbreaks, little is known about the persistence and evolutionary dynamics of endemic CRAB populations. Methods: A three-month cross-sectional observational study was conducted in a 28-bed intensive care unit (ICU) in Hangzhou, China. A total of 5068 samples were collected from the hospital environment (n = 3985), patients (n = 964) and staff (n = 119). CRAB isolates were obtained from 10.5% of these samples (n = 532). All of these isolates, plus an additional 19 from clinical infections, were characterised through whole-genome sequencing. Findings: The ICU CRAB population was dominated by OXA-23-producing global clone 2 isolates (99.3% of all isolates) that could be divided into 20 distinct clusters, defined through genome sequencing. CRAB was persistently present in the ICU, driven by regular introductions of distinct clusters. The hospital environment was heavily contaminated, with CRAB isolated from bed units on 183/335 (54.6%) sampling occasions but from patients on only 72/299 (24.1%) occasions. CRAB was spread to adjacent bed units and rooms, and following re-location of patients within the ICU. We also observed three horizontal gene transfer events between CRAB strains in the ICU, involving three different plasmids. Interpretation: The epidemiology of CRAB in this setting contrasted with previously described clonal outbreaks in high-income countries, highlighting the importance of environmental CRAB reservoirs in ICU epidemiology and the unique challenges in containing the spread of CRAB in ICUs where this important multidrug-resistant pathogen is endemic. Funding: This work was undertaken as part of the DETECTIVE research project funded by the Medical Research Council (MR/S013660/1), National Natural Science Foundation of China (81861138054, 32011530116, 31970128, 31770142), Zhejiang Province Medical Platform Backbone Talent Plan (2020RC075), and the National Key Research and Development Program of China grant (2018YFE0102100). W.v.S was also supported by a Wolfson Research Merit Award (WM160092).

6.
Sci Rep ; 13(1): 12618, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537263

RESUMO

Due to multi-drug resistance, physicians increasingly use the last-resort antibiotic colistin to treat infections with the Gram-negative bacterium Klebsiella pneumoniae. Unfortunately, K. pneumoniae can also develop colistin resistance. Interestingly, colistin resistance has dual effects on bacterial clearance by the immune system. While it increases resistance to antimicrobial peptides, colistin resistance has been reported to sensitize certain bacteria for killing by human serum. Here we investigate the mechanisms underlying this increased serum sensitivity, focusing on human complement which kills Gram-negatives via membrane attack complex (MAC) pores. Using in vitro evolved colistin resistant strains and a fluorescent MAC-mediated permeabilization assay, we showed that two of the three tested colistin resistant strains, Kp209_CSTR and Kp257_CSTR, were sensitized to MAC. Transcriptomic and mechanistic analyses focusing on Kp209_CSTR revealed that a mutation in the phoQ gene locked PhoQ in an active state, making Kp209_CSTR colistin resistant and MAC sensitive. Detailed immunological assays showed that complement activation on Kp209_CSTR in human serum required specific IgM antibodies that bound Kp209_CSTR but did not recognize the wild-type strain. Together, our results show that developing colistin resistance affected recognition of Kp209_CSTR and its killing by the immune system.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Colistina/farmacologia , Colistina/uso terapêutico , Klebsiella pneumoniae/genética , Proteínas de Bactérias/farmacologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Mutação , Imunoglobulina M/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Testes de Sensibilidade Microbiana
7.
mSphere ; 8(4): e0017023, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37417759

RESUMO

Antimicrobial resistance (AMR) is a growing problem, especially in Gram-negative Enterobacteriaceae such as Klebsiella pneumoniae. Horizontal transfer of conjugative plasmids contributes to AMR gene dissemination. Bacteria such as K. pneumoniae commonly exist in biofilms, yet most studies focus on planktonic cultures. Here we studied the transfer of a multi-drug resistance plasmid in planktonic and biofilm populations of K. pneumoniae. We determined plasmid transfer from a clinical isolate, CPE16, which carried four plasmids, including the 119-kbp blaNDM-1-bearing F-type plasmid pCPE16_3, in planktonic and biofilm conditions. We found that transfer frequency of pCPE16_3 in a biofilm was orders-of-magnitude higher than between planktonic cells. In 5/7 sequenced transconjugants (TCs) multiple plasmids had transferred. Plasmid acquisition had no detectable growth impact on TCs. Gene expression of the recipient and a transconjugant was investigated by RNA-sequencing in three lifestyles: planktonic exponential growth, planktonic stationary phase, and biofilm. We found that lifestyle had a substantial impact on chromosomal gene expression, and plasmid carriage affected chromosomal gene expression most in stationary planktonic and biofilm lifestyles. Furthermore, expression of plasmid genes was lifestyle-dependent, with distinct signatures across the three conditions. Our study shows that growth in biofilm greatly increased the risk of conjugative transfer of a carbapenem resistance plasmid in K. pneumoniae without fitness costs and minimal transcriptional rearrangements, thus highlighting the importance of biofilms in the spread of AMR in this opportunistic pathogen. IMPORTANCE Carbapenem-resistant K. pneumoniae is particularly problematic in hospital settings. Carbapenem resistance genes can transfer between bacteria via plasmid conjugation. Alongside drug resistance, K. pneumoniae can form biofilms on hospital surfaces, at infection sites and on implanted devices. Biofilms are naturally protected and can be inherently more tolerant to antimicrobials than their free-floating counterparts. There have been indications that plasmid transfer may be more likely in biofilm populations, thus creating a conjugation "hotspot". However, there is no clear consensus on the effect of the biofilm lifestyle on plasmid transfer. Therefore, we aimed to explore the transfer of a plasmid in planktonic and biofilm conditions, and the impact of plasmid acquisition on a new bacterial host. Our data show transfer of a resistance plasmid is increased in a biofilm, which may be a significant contributing factor to the rapid dissemination of resistance plasmids in K. pneumoniae.


Assuntos
Anti-Infecciosos , Klebsiella pneumoniae , Plasmídeos/genética , Carbapenêmicos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes
8.
Microb Genom ; 9(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272920

RESUMO

The gut microbiota is a reservoir for antimicrobial resistance genes (ARGs). With current sequencing methods, it is difficult to assign ARGs to their microbial hosts, particularly if these ARGs are located on plasmids. Metagenomic chromosome conformation capture approaches (meta3C and Hi-C) have recently been developed to link bacterial genes to phylogenetic markers, thus potentially allowing the assignment of ARGs to their hosts on a microbiome-wide scale. Here, we generated a meta3C dataset of a human stool sample and used previously published meta3C and Hi-C datasets to investigate bacterial hosts of ARGs in the human gut microbiome. Sequence reads mapping to repetitive elements were found to cause problematic noise in, and may importantly skew interpretation of, meta3C and Hi-C data. We provide a strategy to improve the signal-to-noise ratio by discarding reads that map to insertion sequence elements and to the end of contigs. We also show the importance of using spike-in controls to quantify whether the cross-linking step in meta3C and Hi-C protocols has been successful. After filtering to remove artefactual links, 87 ARGs were assigned to their bacterial hosts across all datasets, including 27 ARGs in the meta3C dataset we generated. We show that commensal gut bacteria are an important reservoir for ARGs, with genes coding for aminoglycoside and tetracycline resistance being widespread in anaerobic commensals of the human gut.


Assuntos
Antibacterianos , Genes Bacterianos , Humanos , Antibacterianos/farmacologia , Filogenia , Bactérias , Resistência Microbiana a Medicamentos/genética , Cromossomos
9.
Microbiome ; 11(1): 84, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085924

RESUMO

BACKGROUND: The prediction of bacteriophage sequences in metagenomic datasets has become a topic of considerable interest, leading to the development of many novel bioinformatic tools. A comparative analysis of ten state-of-the-art phage identification tools was performed to inform their usage in microbiome research. METHODS: Artificial contigs generated from complete RefSeq genomes representing phages, plasmids, and chromosomes, and a previously sequenced mock community containing four phage species, were used to evaluate the precision, recall, and F1 scores of the tools. We also generated a dataset of randomly shuffled sequences to quantify false-positive calls. In addition, a set of previously simulated viromes was used to assess diversity bias in each tool's output. RESULTS: VIBRANT and VirSorter2 achieved the highest F1 scores (0.93) in the RefSeq artificial contigs dataset, with several other tools also performing well. Kraken2 had the highest F1 score (0.86) in the mock community benchmark by a large margin (0.3 higher than DeepVirFinder in second place), mainly due to its high precision (0.96). Generally, k-mer-based tools performed better than reference similarity tools and gene-based methods. Several tools, most notably PPR-Meta, called a high number of false positives in the randomly shuffled sequences. When analysing the diversity of the genomes that each tool predicted from a virome set, most tools produced a viral genome set that had similar alpha- and beta-diversity patterns to the original population, with Seeker being a notable exception. CONCLUSIONS: This study provides key metrics used to assess performance of phage detection tools, offers a framework for further comparison of additional viral discovery tools, and discusses optimal strategies for using these tools. We highlight that the choice of tool for identification of phages in metagenomic datasets, as well as their parameters, can bias the results and provide pointers for different use case scenarios. We have also made our benchmarking dataset available for download in order to facilitate future comparisons of phage identification tools. Video Abstract.


Assuntos
Bacteriófagos , Microbiota , Bacteriófagos/genética , Benchmarking , Análise de Sequência de DNA/métodos , Metagenoma/genética , Metagenômica/métodos
10.
Microbiol Spectr ; : e0507422, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916926

RESUMO

Over a 3-month period, we monitored the population of extended-spectrum ß-lactam-resistant Escherichia coli (ESBL-EC) associated with the patients, staff, and environment of an intensive care unit (ICU) in Guangzhou, China. Thirty-four clinical isolates were obtained from the same hospital 12 months later. A total of 165 isolates were characterized and whole-genome sequenced, with 24 isolates subjected to long-read sequencing. The diverse population included representatives of 59 different sequence types (STs). ICU patient and environmental isolates were largely distinct from staff isolates and clinical isolates. We observed five instances of highly similar isolates (0 to 13 single nucleotide polymorphisms [SNPs]) being obtained from different patients or bed unit environments. ESBL resistance in this collection was largely conferred by blaCTX-M genes, which were found in 96.4% of all isolates. The contexts of blaCTX-M genes were diverse, situated in multiple chromosomal positions and in various plasmids. We identified blaCTX-M-bearing plasmid lineages that were present in multiple STs across the surveillance, staff, and clinical collections. Closer examination of ISEcp1-blaCTX-M transposition units shed light on the dynamics of their transmission, with evidence for the acquisition of chromosomal copies of blaCTX-M genes from specific plasmid lineages and for the movement of blaCTX-M-55 from a ST1193 chromosome to a small mobilizable plasmid. A carbapenem-resistant ST167 strain isolated from a patient that had been treated with meropenem and piperacillin-tazobactam contained seven copies of blaCMY-146, which appears to have been amplified by IS1. Our data revealed limited persistence and movement of ESBL-EC strains in the ICU environment, but we observed circulating plasmid lineages playing an essential and ongoing role in shaping the cephalosporin-resistance landscape in the population examined. IMPORTANCE ESBL resistance significantly impacts clinical management of E. coli infections in hospitals globally. It is important to understand the structures of ESBL-EC populations carried by hospital patients and staff, their capacity to persist in hospital environments, and the dynamics of mobile genes that drive the spread of ESBL resistance. In our 3-month study, ESBL-EC strains found in the ICU environment were strongly associated with patient carriage but distinct from strains found in staff. However, plasmid lineages carrying blaCTX-M genes were found across the ICU populations and in a collection of clinical isolates obtained 1 year later. By examining their content and contexts, we have traced the recent histories of chromosomal and plasmid-borne ISEcp1-blaCTX-M transposition units in the ICU population. This information allowed us to implicate specific plasmid lineages in the acquisition of chromosomal blaCTX-M genes, even when the plasmids were no longer present, and to detect recent transposition of blaCTX-M-55 from a chromosome to a mobilizable plasmid. Similar high-resolution approaches to the study of mobile genetic elements will be essential if the transmission routes associated with the spread of ESBL resistance are to be understood and subjected to interventions.

11.
Evol Appl ; 15(7): 1045-1061, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35899254

RESUMO

OXA-23 is the predominant carbapenemase in carbapenem-resistant Acinetobacter baumannii. The co-evolutionary dynamics of A. baumannii and OXA-23-encoding plasmids are poorly understood. Here, we transformed A. baumannii ATCC 17978 with pAZJ221, a bla OXA-23-containing plasmid from clinical A. baumannii isolate A221, and subjected the transformant to experimental evolution in the presence of a sub-inhibitory concentration of imipenem for nearly 400 generations. We used population sequencing to track genetic changes at six time points and evaluated phenotypic changes. Increased fitness of evolving populations, temporary duplication of bla OXA-23 in pAZJ221, interfering allele dynamics, and chromosomal locus-level parallelism were observed. To characterize genotype-to-phenotype associations, we focused on six mutations in parallel targets predicted to affect small RNAs and a cyclic dimeric (3' → 5') GMP-metabolizing protein. Six isogenic mutants with or without pAZJ221 were engineered to test for the effects of these mutations on fitness costs and plasmid kinetics, and the evolved plasmid containing two copies of bla OXA-23 was transferred to ancestral ATCC 17978. Five of the six mutations contributed to improved fitness in the presence of pAZJ221 under imipenem pressure, and all but one of them impaired plasmid conjugation ability. The duplication of bla OXA-23 increased host fitness under carbapenem pressure but imposed a burden on the host in antibiotic-free media relative to the ancestral pAZJ221. Overall, our study provides a framework for the co-evolution of A. baumannii and a clinical bla OXA-23-containing plasmid in the presence of imipenem, involving early bla OXA-23 duplication followed by chromosomal adaptations that improved the fitness of plasmid-carrying cells.

13.
Curr Opin Microbiol ; 68: 102150, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490629

RESUMO

Antibiotic-resistant infections are a major threat to global public health and there is an urgent need to develop new drugs and interventions to treat and prevent infections caused by antibiotic-resistant bacteria. The human gut microbiota harbours both commensals and opportunistic pathogens which can acquire resistance to antibiotics through mutation and horizontal gene transfer. The powerful combination of modern high-throughput DNA sequencing and microbiological culture methods is providing novel insights into the mechanisms of antibiotic resistance among, up to recently poorly studied, commensal bacteria in the gut. Interventions to minimise the abundance of antibiotic-resistant commensals and opportunistic pathogens include faecal microbiota transplantation and the use of live biotherapeutics, but the efficacy of these treatments remains elusive.


Assuntos
Microbioma Gastrointestinal , Antibacterianos/farmacologia , Bactérias/genética , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal , Humanos , Simbiose
14.
Nat Microbiol ; 7(4): 482-483, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35365789
15.
Nat Commun ; 13(1): 893, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173154

RESUMO

Broad-spectrum antibiotics for suspected early-onset neonatal sepsis (sEONS) may have pronounced effects on gut microbiome development and selection of antimicrobial resistance when administered in the first week of life, during the assembly phase of the neonatal microbiome. Here, 147 infants born at ≥36 weeks of gestational age, requiring broad-spectrum antibiotics for treatment of sEONS in their first week of life were randomized 1:1:1 to receive three commonly prescribed intravenous antibiotic combinations, namely penicillin + gentamicin, co-amoxiclav + gentamicin or amoxicillin + cefotaxime (ZEBRA study, Trial Register NL4882). Average antibiotic treatment duration was 48 hours. A subset of 80 non-antibiotic treated infants from a healthy birth cohort served as controls (MUIS study, Trial Register NL3821). Rectal swabs and/or faeces were collected before and immediately after treatment, and at 1, 4 and 12 months of life. Microbiota were characterized by 16S rRNA-based sequencing and a panel of 31 antimicrobial resistance genes was tested using targeted qPCR. Confirmatory shotgun metagenomic sequencing was executed on a subset of samples. The overall gut microbial community composition and antimicrobial resistance gene profile majorly shift directly following treatment (R2 = 9.5%, adjusted p-value = 0.001 and R2 = 7.5%, adjusted p-value = 0.001, respectively) and normalize over 12 months (R2 = 1.1%, adjusted p-value = 0.03 and R2 = 0.6%, adjusted p-value = 0.23, respectively). We find a decreased abundance of Bifidobacterium spp. and increased abundance of Klebsiella and Enterococcus spp. in the antibiotic treated infants compared to controls. Amoxicillin + cefotaxime shows the largest effects on both microbial community composition and antimicrobial resistance gene profile, whereas penicillin + gentamicin exhibits the least effects. These data suggest that the choice of empirical antibiotics is relevant for adverse ecological side-effects.


Assuntos
Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Sepse Neonatal/tratamento farmacológico , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/efeitos adversos , Bifidobacterium/isolamento & purificação , Cefotaxima/farmacologia , Enterococcus/isolamento & purificação , Microbioma Gastrointestinal/genética , Gentamicinas/farmacologia , Humanos , Recém-Nascido , Klebsiella/isolamento & purificação , Testes de Sensibilidade Microbiana , Penicilinas/farmacologia , RNA Ribossômico 16S/genética
16.
Microbiol Spectr ; 10(2): e0213421, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35225687

RESUMO

Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is a threat to global public health. We characterized a sequence type 17 (ST17) K. pneumoniae clinical isolate that was resistant to carbapenems and belonged to serotype KL38/O2. Its complete genome is comprised of a 5.1-Mb chromosome and two conjugative plasmids. The 52,578-bp N-type plasmid pXH210-IMP contains the blaIMP-4 carbapenemase gene and the quinolone resistance gene qnrS1. The 272,742-bp FII(K)-9:FIB(K)-10 plasmid pXH210-AMV carries an array of genes that confer resistance to aminoglycosides, chloramphenicol, quinolones, tetracycline, sulfonamides, trimethoprim, arsenic, copper, and silver. However, the XH210 genome otherwise lacks the genes that are considered characteristic markers of hypervirulence in K. pneumoniae. The virulence potential of XH210 was assessed using a random forest algorithm predictive model, as well as Galleria mellonella and mouse infection models. The results of these were concordant and suggested that XH210 is hypervirulent and therefore a CR-hvKP strain. This worrying convergence of virulence and clinically significant antibiotic resistance is particularly concerning given the absence of typical hypervirulence markers. Further investigations are required to understand the virulence mechanisms of XH210 and to improve the diagnostics of hypervirulent K. pneumoniae. IMPORTANCE The combination of drug resistance and hypervirulence significantly limits the available treatment options for life-threatening infections caused by multidrug-resistant hvKP, especially CR-hvKP. To date, research on IMP-producing CR-hvKP is extremely scarce, and the virulence mechanisms of CR-hvKP are far more complicated and diverse than has been described in the literature so far. In this study, we characterized the tigecycline-resistant and IMP-4 carbapenemase-producing ST17 K. pneumoniae isolate XH210 from a human blood sample. Importantly, XH210 exhibits hypervirulence but does not possess traits that are frequently associated with the phenotype, highlighting the urgent need to improve identification of potentially hypervirulent isolates and enhance active surveillance of CR-hvKP strains to prevent their dissemination.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Camundongos , Antibacterianos/farmacologia , Proteínas de Bactérias , beta-Lactamases , Carbapenêmicos/farmacologia , Modelos Animais de Doenças , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Plasmídeos/genética , Inibidores da Síntese de Proteínas , Sorogrupo
17.
Clin Microbiol Infect ; 28(6): 880.e1-880.e8, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34826621

RESUMO

OBJECTIVES: To characterize Alcaligenes faecalis metallo-ß-lactamase (MBL) AFM-2 and AFM-3 from clinical Pseudomonas aeruginosa isolates NDTH10366, NDTH9845 and WTJH17. METHODS: Clinical isolates were whole-genome sequenced using the Illumina and Oxford Nanopore platforms. MICs of clinical isolates and transformants containing MBL genes were determined using broth microdilution methods. Kinetic parameters of purified AFM and NDM-1 were measured using a spectrophotometer. The AFM structure was modelled with SWISS-MODEL. RESULTS: NDTH10366 and NDTH9845 were extensively drug-resistant (XDR) isolates carrying blaAFM-2 and multiple copies of blaKPC-2, whereas WTJH17 was an XDR isolate carrying blaAFM-3. The plasmid-borne blaAFM-2 and blaAFM-3 genes are associated with a novel ISCR element, ISCR29. AFM-2 and AFM-3, differing from AFM-1 by one amino acid substitution each, shared 86.2% and 86.6% amino acid sequence identity with NDM-1, respectively. Phylogenetic analysis confirmed the close relationship between AFM and NDM. Expression of AFM and NDM-1 under their native promoters in DH5α and PAO1 led to elevated MICs for all tested ß-lactams except aztreonam. Comparable catalytic abilities were observed for AFM and NDM-1 when hydrolysing nitrocefin, cefepime, imipenem and biapenem, whereas for other tested ß-lactams AFM displayed weaker enzymatic activities. Modelling AFM structure revealed a characteristic αß/ßα fold with two zinc-binding active sites. CONCLUSIONS: AFM from clinical P. aeruginosa isolates demonstrated ß-lactamase activity comparable to NDM-1. Co-carriage of blaAFM and blaKPC renders clinical P. aeruginosa isolates non-susceptible to all antipseudomonal ß-lactams. The association of blaAFM genes with translocatable genetic elements and plasmids highlights their concerning potential for dissemination.


Assuntos
Alcaligenes faecalis , Infecções por Pseudomonas , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , beta-Lactamases/genética , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
18.
BMJ Open ; 11(12): e052128, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916313

RESUMO

BACKGROUND: Around 15%-20% of children with acute otitis media present with ear discharge due to a spontaneous tear or perforation of the eardrum (AOMd). Current guidance recommends clinicians to consider oral antibiotics as first-line treatment in this condition. The opening in the eardrum however should allow topical antibiotics to enter the middle ear directly. Local administration of antibiotics does not expose children to systemic side effects and may put less selective resistance pressure on bacteria. Evidence on the effectiveness of this approach in children with AOMd is lacking. METHODS AND ANALYSIS: A primary care-based, open, individually randomised, controlled, non-inferiority trial. The trial aims to recruit 350 children aged 6 months to 12 years with AOMd and ear pain and/or fever. Participants will be randomised to 7 days of hydrocortisone-bacitracin-colistin eardrops five drops three times daily or amoxicillin oral suspension 50 mg/kg body weight per day, divided over three doses. Parents will keep a daily diary of AOM symptoms, adverse events and complications for 2 weeks. In addition, they will record AOM recurrences, healthcare utilisation and societal costs for 3 months. The primary outcome is the proportion of children without ear pain and fever at day 3. Secondary outcomes include ear pain and fever intensity/severity; days with ear discharge; eardrum perforation at 2 weeks; adverse events during first 2 weeks; costs; and cost effectiveness at 2 weeks and 3 months. The primary analyses will be intention-to-treat and per-protocol analyses will be conducted as well. ETHICS AND DISSEMINATION: The medical research ethics committee Utrecht, The Netherlands has given ethical approval (17-400/G-M). Parents/guardians of participants will provide written informed consent. Study results will be submitted for publication in peer-reviewed medical journals and presented at relevant (inter)national scientific meetings. TRIAL REGISTRATION NUMBER: The Netherlands National Trial Register; NTR6723. Date of registration: 27 November 2017.


Assuntos
Antibacterianos , Otite Média com Derrame/tratamento farmacológico , Amoxicilina/uso terapêutico , Antibacterianos/uso terapêutico , Criança , Humanos , Dor/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Microbiology (Reading) ; 167(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34491894

RESUMO

Enterococcus faecium is a nosocomial, multidrug-resistant pathogen. Whole genome sequence studies revealed that hospital-associated E. faecium isolates are clustered in a separate clade A1. Here, we investigated the distribution, integration site and function of a putative iol gene cluster that encodes for myo-inositol (MI) catabolism. This iol gene cluster was found as part of an ~20 kbp genetic element (iol element), integrated in ICEEfm1 close to its integrase gene in E. faecium isolate E1679. Among 1644 E. faecium isolates, ICEEfm1 was found in 789/1227 (64.3 %) clade A1 and 3/417 (0.7 %) non-clade A1 isolates. The iol element was present at a similar integration site in 180/792 (22.7 %) ICEEfm1-containing isolates. Examination of the phylogenetic tree revealed genetically closely related isolates that differed in presence/absence of ICEEfm1 and/or iol element, suggesting either independent acquisition or loss of both elements. E. faecium iol gene cluster containing isolates E1679 and E1504 were able to grow in minimal medium with only myo-inositol as carbon source, while the iolD-deficient mutant in E1504 (E1504∆iolD) lost this ability and an iol gene cluster negative recipient strain gained this ability after acquisition of ICEEfm1 by conjugation from donor strain E1679. Gene expression profiling revealed that the iol gene cluster is only expressed in the absence of other carbon sources. In an intestinal colonization mouse model the colonization ability of E1504∆iolD mutant was not affected relative to the wild-type E1504 strain. In conclusion, we describe and functionally characterise a gene cluster involved in MI catabolism that is associated with the ICEEfm1 island in hospital-associated E. faecium isolates. We were unable to show that this gene cluster provides a competitive advantage during gut colonisation in a mouse model. Therefore, to what extent this gene cluster contributes to the spread and ecological specialisation of ICEEfm1-carrying hospital-associated isolates remains to be investigated.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Antibacterianos , Enterococcus faecium/genética , Genoma Bacteriano , Hospitais , Inositol , Camundongos , Família Multigênica , Filogenia
20.
mSystems ; 6(4): e0013721, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34254820

RESUMO

In many low- and middle-income countries, antibiotic-resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here, we characterized the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of extended-spectrum beta-lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanized settings (n = 7), rural ponds with a history of aquaculture-related antibiotic use (n = 11), and rural ponds with no history of antibiotic use (n = 6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum Proteobacteria (on average, 73.8% of assigned reads), while in the water samples, Cyanobacteria were the predominant phylum (on average, 60.9% of assigned reads). Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. The abundance of antibiotic resistance genes was significantly correlated (R2 = 0.73; P = 8.9 × 10-15) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanized settings. IMPORTANCE Low- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries, and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here, we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh. We found that urban surface waters are particularly rich in antibiotic resistance genes, with a higher number of them associated with plasmids, indicating that they are more likely to spread horizontally. The abundance of antibiotic resistance genes was strongly correlated with the abundance of bacteria that originate from the human gut, suggesting that uncontrolled release of human waste is a major driver for the spread of antibiotic resistance in the urban environment. Improvements in sanitation in LMICs may thus be a key intervention to reduce the dissemination of antibiotic-resistant bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA